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Properties of Measure

We know how to measure certain subsets of Rd

(cubes, spheres, rectangles, etc.) In general, can we assign a unique value
or “measure” |E | for each set E ⊆ Rd such that certain “nice” properties
hold?

(i) 0 ≤ |E | ≤ ∞.

(ii) A unit cube Q = [0, 1]d has a measure |Q| = 1.

(iii) Countable Additivity: Given a finitely or countably many disjoint
subsets of Rd , (E1,E2, ...), then∣∣∣∣∣⋃

k

Ek

∣∣∣∣∣ =
∑
k

|Ek |.

(iv) Translation Invariant: |E + h| = |E | for all h ∈ Rd .
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Lebesgue Measure
As it turns out, the answer is no. This is a result from the Axiom of
Choice. However, we can relax the condition that every subset of Rd is
measurable, to get a measure that satisfies the four properties.

Definition

A set E ⊆ Rd is Lebesgue measurable if ∀ε > 0, ∃ open U ⊇ E such that
|U\E |e ≤ ε.
*Where | · |e represents an external Lebesgue measurable.
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The Theorem

Theorem

There exists a set N that is not Lebesgue measurable. Taking it further,
there exists no measure function µ : P(R)→ [0,∞] that satisfy all the
properties (i − iv).

Proof idea.

Construct a set N using the Axiom of Choice.

Using the Steinhaus Theorem, show that N is not Lebesgue
measurable.

Prove by contradiction there exists no measure that satisfies all four
properties for all subsets in Rd .
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Axiom of Choice

The construction of a non-measurable set requires the Axiom of Choice,
defined below,

Axiom (Axiom of Choice)

Given a nonempty set S , let P be the family of all nonempty subsets of S ,
There exists a function f : P → S such that f (A) ∈ A for each A ∈ P.

An equivalent statement is as follows.

Axiom (Axiom of Choice) equivalent

The Cartesian product
∏

i∈I Ai of any collection {Ai}i∈I of nonempty sets
is nonempty.

The latter statement implies that given a collection of nonempty disjoint
sets {Ai}i∈I , there exists a set N such that it contains exactly one element
from each Ai .
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Axiom of Choice
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Constructing a Non-Measurable set

1 Let ∼ be an equivalence relation between two points x , y ∈ R, such
that

x ∼ y ⇐⇒ x − y ∈ Q.

2 Moreover, let the the equivalence class of x be denoted as

[x ] = {y ∈ R : x − y ∈ Q} = {q + x : q ∈ Q} = Q + x .

3 Each equivalence class of ∼ is a translation of the set of rational
numbers by x . As consequence, there are an uncountable number of
distinct [x ] that partition R, each of which is a countable set.

4 Then by the Axiom of Choice, there is a set N ⊆ R that contains
exactly one element from each distinct equivalence class of ∼.
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Steinhaus Theorem

Theorem

If E ⊆ R is Lebesgue measurable and |E | > 0, then the set of differences

E − E = {x − y : x , y ∈ E}

contains the interval centered at 0.

Lemma

Given measurable subset E of Rd and 0 < α < 1, such that
0 < |E |e <∞, there exists a cube Q such that |E ∩ Q|e ≥ α|Q|.
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Steinhaus Theorem: Lemma

Lemma

Given measurable subset E of Rd and 0 < α < 1, such that
0 < |E |e <∞, there exists a cube Q such that |E ∩ Q|e ≥ α|Q|.

1 Let E be a measurable subset in Rd , and let α ∈ (0, 1).

2 Let Q =
n⋃

i=1
Qi be a collection of nonempty boxes of equal measure

such that there is at least one i ∈ {1, ..., n} such that Qi ⊆ E .
3 Such an i exists as |E |e > 0.
4 By scaling down |Qi | by α, we have,

|Qi |e ≥ α|Qi |.

5 Thus by containment, there exists a cube Qi , where

|E ∩ Qi |e = |Qi |e ≥ α|Qi |e = α|Qi |.
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Steinhaus Theorem: Lemma visual
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Steinhaus Theorem Proof

Theorem

If E ⊆ R is Lebesgue measurable and |E | > 0, then the set of differences
E − E = {x − y : x , y ∈ E} contains the interval centered at 0.

Proof.

By the Lemma, There exists an interval I = [a, b] such that
|F | = |E ∩ I | ≥ 3

4 |I |. Translating by t we have, I ∩ (I + t) = [a, b + t]
if t ≥ 0, and I ∩ (I + t) = [a− |t|, b] if t ≤ 0, then

I ∪ (I + t) ≤ |I |+ |t|.

Consider the case where F and F + t are disjoint, then by the lemma,

2|I | < 4

3
· 2|F |.

2|I | =
4

3
|F ∪ (F + t)|.
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Steinhaus Theorem Proof (Continued)

Proof.

By monotonicity,

2|I | ≤ 4

3
|I ∪ (I + t)| ≤ 4

3
(|I |+ |t|).

Note that the equation does not hold for small |t|, thus F and F + t
intersect for small enough |t|, that is

|t| < 1

2
|I | =⇒ F ∩ (F + t) 6= ∅.

Thus, F − F and E − E must contain the interval (−|I |2 , |I |2 ).
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Proof of the existence of a Non-Measurable set

Theorem

The set N (defined earlier) is not Lebesgue measurable.

Proof.

First we assume N is measurable for contradiction. Note that N
contains exactly one element from each distinct equivalence class.
Since these distinct equivalence classes partition R,

R =
⋃
x∈N

(Q + x) =
⋃
x∈N

⋃
q∈Q
{q + x} =

⋃
q∈Q

(N + q).

As the external Lebesgue measure is translation invariant and has
countable subadditivity,

∞ = |R|e =

∣∣∣∣∣∣
⋃
q∈Q

(N + q)

∣∣∣∣∣∣
e

≤
∑
q∈Q
|N + q|e =

∑
q∈Q
|N|e .
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Proof of the existence of a Non-measurable set (continued)

Theorem

The set N (defined earlier) is not Lebesgue measurable.

Proof.

Thus |N|e > 0 as ∞ ≤
∑
q∈Q
|N|e . Note that any two different points

from N must come from two distinct equivalence classes of ∼ and
must differ by an irrational value. N − N contains no intervals;
however, by Steinhaus, N − N contains an interval, revealing the
contradiction. Thus, N is not Lebesgue measurable.
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Taking it further
Besides showing the existence of set that is not Lebesgue measurable, we
can similarly prove that there is no measure function which satisfies our
four “nice” properties of measure mentioned earlier.

Theorem

There exists no measure function µ : P(R)→ [0,∞] that satisfies all the
properties (i-iv).

Using the equivalence classes of the relation ∼ over the interval [0, 1)
and the Axiom of Choice, construct a set M.
We assume that such a function exists for contradiction.
We can create a union of countable (non-finite) distinct sets
Mk = M + qk for qk ∈ Q ∩ [−1, 1]. Moreover, we can bound its
measure between two known measures,

1 = µ([−1, 0)) ≤ µ(
∞⋃
k=1

Mk) ≤ µ([−1, 2)) = 3.
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Taking it further (continued)

Theorem

There exists no measure function µ : P(R)→ [0,∞] that satisfies all the
properties (i-iv).

By countable additivity and translation invariance,

µ(
∞⋃
k=1

Mk) =
∞∑
k=1

µ(Mk) =
∞∑
k=1

µ(M).

Since µ(M) ≥ 0,
∞∑
k=1

µ(M) = 0 if µ(M) = 0 or
∞∑
k=1

µ(M) =∞ if

µ(M) > 0. This contradicts,

1 ≤ µ(
∞⋃
k=1

Mk) =
∞∑
k=1

µ(M) ≤ 3.

Therefore, it is shown that no such function µ exists.
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Thank you
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